Mod 1:Lesson 1.1 Day 1	Writing set/interval notation for inequalities (Domain)
Objective:	We will be able to write the domain of the linear inequality in set notation and interval notation.

Infinite interval is unbounded at one or both ends				
Description of Interval	Type of Interval	Inequality	Set Notation	Interval nota
All real numbers from a to b , ncluding a and b	Finite	$a \le x \le b$	$\{x a \le x \le b\}$	[a, b]
All real numbers greater than a	Infinite	x > a	$\{x x>a\}$	$(a, +\infty)$
All real numbers less than or equal to a	Infinite	$x \le a$	$\{x \mid x \leq a\}$	$(-\infty,a]$
	the vertical bar			
For set notation, $\{x x\geq 1\}$ as "the se equal to 1."	et of real numbe	ers such ti	lat x is give	

