Se	ction 1.3	Translations of Parent Functions
<u>Ob</u>	jective:	Given the parent functions students will be able to identify and graph rigid and non rigid transformations (focus
		on step function). Study problems Page 106 # 14, 5-40 (*5), 55,
		59, 65, 71

	Summary of Function Terminology Function: A function is a relationship between two variables such that to each value of the independent variable there corresponds exactly one value of
ł	the dependent variable.
1	Function Notation: $y = f(x)$ f is the name of the function.
	y is the dependent variable , or output value. x is the independent variable , or input value. f(x) is the value of the function at x.
	Domain: The domain of a function is the set of all values (inputs) of the independent variable for which the function is defined.
	Range: The range of a function is the set of all values (outputs) assumed by the dependent variable (that is, the set of all function values).

			1
Constant	Linear	Absolute Value	Quadratic
		1 1 /	\ 4' /
			\1/
			f(x) = x ²
f(x) = c	f(x) = x	f(x) = x	f(x) = x ²
f(x) = c			f(x) = x ² Reciprocal/Inverse/ Rational
	f(x) = x	f(x) = x	Reciprocal/Inverse/
f(x) = c	f(x) = x	f(x) = x	Reciprocal/Inverse/
f(x) = c Square Root	f(x) = x	f(x) = x	Reciprocal/Inverse/
f(x) = c	f(x) = x	f(x) = x	Reciprocal/Inverse/
f(x) = c Square Root	f(x) = x	$f(x) = x $ Cube Root $f(x) = \sqrt[3]{x}$	Reciprocal/Inverse/ Rational $f(x) = \frac{1}{x}$
f(x) = c Square Root	f(x) = x	f(x) = x Cube Root	Reciprocal/Inverse/
$f(x) = c$ Square Root $f(x) = \sqrt{x}$	$f(x) = x$ Cubic $f(x) = x^3$	$f(x) = x $ Cube Root $f(x) = \sqrt[3]{x}$	Reciprocal/Inverse/ Rational $f(x) = \frac{1}{x}$ Greatest Integer
$f(x) = c$ Square Root $f(x) = \sqrt{x}$	$f(x) = x$ Cubic $f(x) = x^3$	$f(x) = x $ Cube Root $f(x) = \sqrt[3]{x}$	Reciprocal/Inverse/ Rational $f(x) = \frac{1}{x}$ Greatest Integer

Vocabulary: Even Functions: f(x) is an even function if it reflects across the y

axis. Therefore f(-x) = f(x)

Odd Functions: f(x) is an odd function if it reflects across the x axis

and y axis. Therefore f(-x) = -f(x)

$$y=a f(x-h)+k$$

Rigid Transformations (Shape of graph does not change)

- **Horizontal Shifts**
- Vertical shifts
- Reflections

Nonrigid Transformations (Same shape but Dilated)

- Y value increases if a> 1
- Y value decreases if 0 < a < 1

Sketch the graph f(x)=xDescribe how the graphs are relate to the graph of *f* (parent function).

Describe how the graphs are relate to the graph of *f* (parent function).

$$f(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx$$

$$f(x) = \sqrt{x} + 4$$

Identify the parent function. Write a function for the graph below using function notation.

Identify the parent function. Write a function for the graph below using function notation.

		Example
--	--	---------

Use the graph of $f(x) = x^2$ to describe the graph of the function.

$$g(x) = -(x-2)^2$$

- \bigcirc a. Shift f(x) to the right 2 units and then reflect in the x-axis.
- \bigcirc b. Shift f(x) to the left 2 units and then reflect in the x-axis.
- \bigcirc c. Shift f(x) to the right 2 units and then reflect in the y-axis.
- O d. None of the above.

	Compare the graph of the function	
	$g(x) = -\sqrt{x} - 2$	
	with the graph of	
	$f(x) = \sqrt{x + 2}.$	
	\bigcirc a. The graph of g is a reflection of the graph of f in the g -axis.	
	 b. The graph of g is reflection of the graph of f in the y-axis and shifted 2 units. 	
	\bigcirc c. The graph of g is a reflection of the graph of f in the x -axis and shifted left 2 units.	
	─	
Example		
Example	Use the graph of $f(x) = x^2$ to describe the graph of the function.	
Example		
Example	Use the graph of $f(x) = x^2$ to describe the graph of the function. $h(x) = -x^2 + 3$	
Example	Use the graph of $f(x) = x^2$ to describe the graph of the function. $h(x) = -x^2 + 3$ a. Reflect $f(x)$ in the y -axis and then shift downward 3 units.	
Example	Use the graph of $f(x) = x^2$ to describe the graph of the function. $h(x) = -x^2 + 3$	
Example	Use the graph of $f(x) = x^2$ to describe the graph of the function. $h(x) = -x^2 + 3$	
Example	Use the graph of $f(x) = x^2$ to describe the graph of the function. $h(x) = -x^2 + 3$	
Example	Use the graph of $f(x) = x^2$ to describe the graph of the function. $h(x) = -x^2 + 3$	
Example	Use the graph of $f(x) = x^2$ to describe the graph of the function. $h(x) = -x^2 + 3$	
Example	Use the graph of $f(x) = x^2$ to describe the graph of the function. $h(x) = -x^2 + 3$	
Example	Use the graph of $f(x) = x^2$ to describe the graph of the function. $h(x) = -x^2 + 3$	

Example		
	Relative to the graph of $f(x) = x^3$, how is the graph of $h(x)$ shifted? $h(x) = (x - 1)^3 + 8$	
	a. 1 unit right, 8 units upward	
	b. 8 units left, 1 unit downward	
	◯ c. 8 units right, 1 unit upward	
	O d. None of the above.	

using ti	he graph of y=f(x)
	\bigcirc a. Move the graph of $f(x)$ 6 units to the left, reflect through the y -axis and then move 3 units down.
	\bigcirc b. Move the graph of $f(x)$ 6 units to the right, reflect through the y -axis and then move 3 units down.
	\bigcirc c. Move the graph of $f(x)$ 6 units to the left, reflect through the y -axis and then move 3 units up.
	\bigcirc d. Move the graph of $f(x)$ 6 units to the right, reflect through the x -axis and then move 3 units up.

(c) $y = f(x - 2)$ (d) $y = f(x + 3)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(e) $y = 2f(x)$ (f) $y = f(-x)$	-4