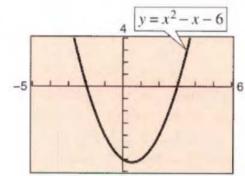
Section P.3 Part 2	Solving Inequalities Algebraically and Graphically
Objective:	Given an inequality, students will find its solutions algebraically, graphically and
	explain the process. Study Problems Section P.5
	Page 63 #45-49 odd, 72, 74-77
	'

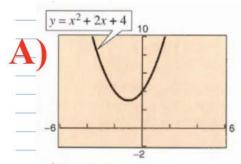
Describe the x-values where the quadratic has y-values that are entirely positive and entirely negative.

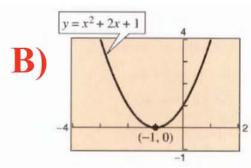


Draw a quadratic that would have all

a) y-values positive

b) y-values negative





Explain which quadratic has all

- a) y-values positive (A
- b) y-values positive but one

Example 1

Find the solution set that makes the inequalities true.

$$x^2 - 3x - 4 > 0$$

$$x>4$$
, $x>-1$

$$x = 2 : (2)^2 - 3(2) - 4 = -6$$

Are the solution of this inequality the same or different?

$$x^2 - 3x > 4$$

Example 2

Find the solution set that makes the inequalities

$$2x^{2} + 5x > 12$$

$$2x^{2} + 5x - 12 > 0$$

$$(2x-3)(x+y) > 0$$
Test intervals: $(-\infty, -4)$, $(-4, -4)$,

$$X=0$$
: $2(0)^2+5(0)-12=-12$ Negative

Critical Values
$$X = 3/2$$
, $X = 4$ $X = 2$: $2(2)^2 + S(2) - 12 = 6$ passitive

Solution set
$$(-0,-4)U(32,00)$$

 $(2,00)$

Find the solution set that makes the inequalities true.

$$x^3 + 7x^2 + 6x < 0$$
 $(0, \infty)$

$$X(x^2+7x+6)<0$$

$$x=-6$$
, $x=-1$
 $x=-3$ $(-3)^3+7(-3)^2+6(-3)=42$ positive

Solution Set

$$(-6,-1)\cup(0,0)$$