A fraction with a denomin	ato
of 0 is undefined because	γοι
cannot divide by zero. So	it is
not a number at all.	
35 - unlight	L

	Additional Example 1: Classifying Real Numbers Write all classifications that apply to each number
Α.	5 is a whole number that is not a perfect square.
В.	-12.75 <i>-12.75 is a terminating decimal.</i> rational, real
C.	$\frac{\sqrt{16}}{2}$ $\frac{\sqrt{16}}{2}$ = $\frac{4}{2}$ = 2 Whole, integer, rational, real

	Write all classifications that apply to each number.
A	$\sqrt{9}$ $\sqrt{9}$ = 3 whole, integer, rational, real
В	35.9 -35.9 is a terminating decimal.
C	$\frac{\sqrt{81}}{3}$ $\frac{\sqrt{81}}{3}$ = $\frac{9}{3}$ = 3 whole, integer, rational, real

	WAYS true, which is SO	ivie Hivies true, and
wnich is NEVE	R true? Explain.	
a) The prod	uct of a rational # and a	rational # is rational
Always	tru b/c ex.	2·2=4 H3
b) The prod	uct of a rational # and ar	rirrational # is
irrational.	Alway true 62	- × √2 (3) = 3
c) The Prod	uct of an irrational # and	an irrational # is
irrational.	Sometime b/c	$\sqrt{2} \cdot \sqrt{2} = 2$
and	2 is a rational.	