_Sec	ction 2.2	Polynomial functions of higher degree
Ob	jective:	Given a polynomial function students will be able to sketch its graph using facts learned in math 3, such as leading coefficient test, fundamental theorem of algebra, multiplicity, etc.
		Study Problems
		Page 156 #10-11, 23, 25, 33-35, 47,
		51, 59, 63, 73, 77

Warm Up

2.
$$f(x) = -x^3 + 4x$$

3.
$$f(x) = x^3$$

4.
$$f(x) = x^3 - 4x$$

Page 155

Continuous The graph of a polynomial function has no breaks, holes, or gaps. Its graph also is smooth with rounded turns.

If n is even, the graph of $y = x^0$ touches the axis at the x-intercept.

If n is odd, the graph of $y = x^{\Omega}$ crosses the axis at the x-intercept.

(c)

(d)

Match the graph with the function.

3.
$$f(x) = -2x^2 - 5x$$

5.
$$f(x) = -\frac{1}{4}x^4 + 3x^2$$

7.
$$f(x) = x^4 + 2x^3$$

2.
$$f(x) = x^2 - 4x$$

4.
$$f(x) = 2x^3 - 3x + 1$$

6.
$$f(x) = -\frac{1}{3}x^3 + x^2 - \frac{4}{3}$$

8.
$$f(x) = \frac{1}{5}x^5 - 2x^3 + \frac{9}{5}x$$

Describe the right-hand and left- hand behavior of the graph of each of the following functions. Justify your response

(b)
$$g(x) = 5x^5 + 2x^3 - 14x^2 + 6$$

(a)
$$h(x) = -x^5 + 3x^4 - x$$

and degree is even, then both sides are down

Left I right

 $X \to \infty , f(x) = -\infty$ $X \to -\infty , f(x) = -\infty$

since the L.C is positive & legree is odd, then Falls on the left and rises on the right.

 $X \rightarrow \infty$, $f(x) = \infty$ $x \rightarrow -\infty$, $f(x) = -\infty$

Since the L.C is Negative of degree is odd, then rises on the left and Falls on the right.

 $x \rightarrow \infty$, $f(x) = -\infty$ $x \rightarrow -\infty$, $f(x) = +\infty$

	Positive Coefficient	Negative Coefficient
Even Degree X ² X ⁴ X ⁶	Rises Left Right	x→∞ x→∞ y→∞ Falls Falls Left Risht
Odd Degree ׳ ×⁵ ײ	x → ∞ y → ∞ y → ∞ y → ∞ Falls Rises Left Right	Rises Falls

Real Zeros of Polynomial Functions					
If f is a polynomial function and a is a real number, the following statements are equivalent. 1. x = a is a zero of the function f.					
 2. x = a is a solution of the polynomial equation f(x) = 0. 3. (x - a) is a factor of the polynomial f(x). 					
4. (a,0) is an x-intercept of the graph of f.					
even powers bounce/touch					

Example

Sketch the function by finding the zeros, determine its end behavior, plot points and connect with a curve, state any multiplicities and relative max and mins.

