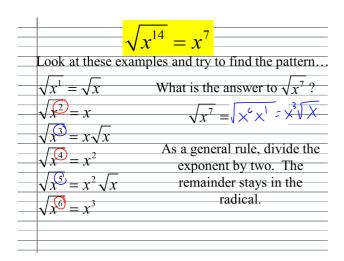
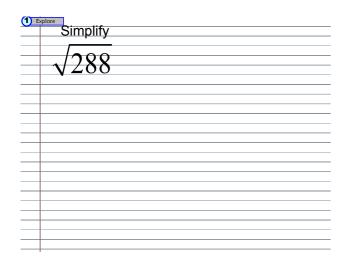
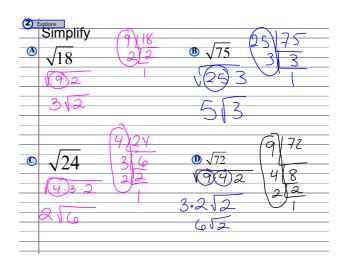

What numbers are perfect squares?
1•1=1
2 • 2 = 4
$3 \cdot 3 = 9$ $4 \cdot 4 = 16$
4 • 4 = 16
5 • 5 = 25
6 • 6 = 36
49, 64, 81, 100, 121, 144,


Square roots are inverses of squaring a number. Example: $4^2 = 16$, so $\sqrt{16} = 4$ When you are trying to find a square root, ask yourself, "what number when multiplied by itself (squared) would be 16?" 4 because 44 = 16. Cube roots are the inverses of cubing a number. Example $4^3 = 64$, so $\sqrt[3]{64} = 4$ When you are trying to find a cube root, ask yourself, what number when multiplied by itself 3 times (cubed) would be this number? In the above example, "what number when multiplied by itself 3 times (cubed) would be this number? 4 because 44 + 4 = 64S 2 - 3 - 3S 3 3 - 3S

2





	Steps
1	. Try to divide the radicand into a perfect square for numbers
2	. If there is an exponent make it even by using rules of exponents
_3	. Separate the factors to its own square root
_4	. Simplify

